Upsample Anything: A Simple and Hard to Beat Baseline for Feature Upsampling
Abstract
We present Upsample Anything, a lightweight test-time optimization (TTO) framework that restores low-resolution features to high-resolution, pixel-wise outputs without any training. Although Vision Foundation Models demonstrate strong generalization across diverse downstream tasks, their representations are typically downsampled by 14×/16× (e.g., ViT), which limits their direct use in pixel-level applications. Existing feature upsampling approaches depend on dataset-specific retraining or heavy implicit optimization, restricting scalability and generalization. Upsample Anything addresses these issues through a simple per-image optimization that learns an anisotropic Gaussian kernel combining spatial and range cues, effectively bridging Gaussian Splatting and Joint Bilateral Upsampling. The learned kernel acts as a universal, edge-aware operator that transfers seamlessly across architectures and modalities, enabling precise high-resolution reconstruction of features, depth, or probability maps. It runs in only 0.419s per 224×224 image and achieves state-of-the-art performance on semantic segmentation, depth estimation, and both depth and probability map upsampling.
Visual comparison between AnyUP and Upsample Anything.
3D feature visualization results.
Segmentation Results of Upsample Anything.
Upsample Anything’s segmentation pipeline.
BibTeX
@article{YourPaperKey2024,
title={Your Paper Title Here},
author={First Author and Second Author and Third Author},
journal={Conference/Journal Name},
year={2024},
url={https://your-domain.com/your-project-page}
}